
Synchronization
COS 450 - Fall 2018

1

Producer - Consumer
Remember the Producer and
Consumer scenario...

...it had a hidden problem

2

public void insert(Object item) {

while (count == BUFFER_SIZE) {

; //do nothing buffer full

}

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

insert()
Is this code correct?

Yes, it is

3

COS450-F16-06-Synchronization - October 8, 2018

public Object remove() {

while (count == 0) {

; //do nothing buffer empty

}

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

remove()
Is this code correct?

Yes, it is

4 Similar process happens with
remove that happened with insert.

Together However....
public void insert(Object item) {

while (count == BUFFER_SIZE) {
; //do nothing buffer full
}

++count;
buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;
}

public Object remove() {
while (count == 0) {

; //do nothing buffer empty
}

--count;
item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
return item;
}

...we have a problem

++count;

--count;

5

Look at “++count”?
If we dig deeper we see...

...
1: movl _count(%ebx), %eax ; load
2: cmpl $10, %eax ; compare
3: je 1 ; loop
4: incl %eax ; increment
5: movl %eax, _count(%ebx) ; store
...

 conveniently produced by “gcc -O2 -S count.c”

6

COS450-F16-06-Synchronization - October 8, 2018

...and “--count”
If we dig deeper we see...

...
1: movl _count(%ebx), %eax ; load
2: testl %eax, %eax ; compare
3: je 1 ; loop
4: decl %eax ; decrement
5: movl %eax, _count(%ebx) ; store
...

 conveniently produced by “gcc -O2 -S count.c”

7

When they run concurrently

we might see something like...

A1: movl _count(%ebx), %eax ; load
A2: cmpl $10, %eax ; compare
A3: je 1 ; loop
A4: incl %eax ; increment
B1: movl _count(%ebx), %eax ; load
B2: testl %eax, %eax ; compare
B3: je 1 ; loop
B4: decl %eax ; decrement
B5: movl %eax, _count(%ebx) ; store
A5: movl %eax, _count(%ebx) ; store

What is count?

8

What is count?
9

COS450-F16-06-Synchronization - October 8, 2018

Critical Section

Some bits of code are rather
important.

don’t interrupt them

10

public void insert(Object item) {

while (count == BUFFER_SIZE) {

; //do nothing buffer full

}

++count;

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

insert()

What is Critical?Just this line.

11

public Object remove() {

while (count == 0) {

; //do nothing buffer empty

}

--count;

item = buffer[out];

out = (out + 1) % BUFFER_SIZE;

return item;

}

remove()

Same thing here

12 Similar process happens with
remove that happened with insert.

COS450-F16-06-Synchronization - October 8, 2018

Solved!
public void insert(Object item) {

while (count == BUFFER_SIZE) {

; //do nothing buffer full

}

enterCS();

++count;

leaveCS();

buffer[in] = item;

in = (in + 1) % BUFFER_SIZE;

}

13

A solution must ensure...

• Mutual Exclusion

• Progress

• Bounded Waiting

14

Software Solution
Two process solution

Assume LOAD and STORE are atomic

15 Peterson’s Solution in textbook

COS450-F16-06-Synchronization - October 8, 2018

Hardware Solutions
16

Get and Set
17

Swap
18

COS450-F16-06-Synchronization - October 8, 2018

Semaphores

an integer based synchronization
mechanism

19

Operations

Semaphores have two operations
defined on them...

acquire

release

20

Semaphore Use
Semaphore S = new Semaphore()

S.acquire();

 // critical section

S.release();

...this is a simple mutex lock or

binary semaphore

21

COS450-F16-06-Synchronization - October 8, 2018

Multiple Resources
Semaphore S = new Semaphore(10)

S.acquire();

 // critical section

S.release();

...here we can enter the critical section
multiple times

22

Monitors

language based mutex

...in Java, “synchronized” keyword

23

Synchronized insert() and remove() methods

24

COS450-F16-06-Synchronization - October 8, 2018

Implementation Details

• busy waiting (spinlock) 
while (canEnter()) { }

• wait and notify 
while(canEnter()) { wait(); } 

25

• When a thread invokes wait():  
 
1. The thread releases the object lock; 
2. The state of the thread is set to Blocked;  
3. The thread is placed in the wait set for the object. 

• When a thread invokes notify(): 
 
1. An arbitrary thread T from the wait set is selected; 
2. T is moved from the wait to the entry set; 
3. The state of T is set to Runnable.

26

27

COS450-F16-06-Synchronization - October 8, 2018

Classic Synchronization
Problems

• Bounded Buffer

• Readers-Writers

• Dining Philosophers

28

Bounded Buffer

Multiple processes share a common
memory buffer.

...we have already

looked at this one

29

Readers-Writers

Many can
read

Only one
can write

30

COS450-F16-06-Synchronization - October 8, 2018

Dining Philosophers
31

deadlock

32

processes compete for resources

the problem is...
33

COS450-F16-06-Synchronization - October 8, 2018

Request

UseRelease

how a process uses a resource...

34

deadlock can only exist if...

35

Mutual Exclusion

36

COS450-F16-06-Synchronization - October 8, 2018

Hold and Wait

37

No Preemption

38

Circular Wait

39

COS450-F16-06-Synchronization - October 8, 2018

40

How to handle deadlock

Prevent - 4 conditions

Avoid - safe states

Detect - after the fact

Ignore - it’s the administrator’s problem

41

Prevention

don’t let the conditions exist that cause deadlock...

Mutual Exclusion

Hold and Wait

No Preemption

Circular Wait

42

COS450-F16-06-Synchronization - October 8, 2018

Avoidance

keep from going into a state that may allow deadlock...

Safe States
Unsafe States

...using Banker’s, Safety,  
Resource-Request algorithms.

43

Detection

does deadlock currently exist in the system?

examine resource allocation graph

What do do if you find it?

44

Ignore
45

COS450-F16-06-Synchronization - October 8, 2018

Deadlock

• Mutual Exclusion

• Hold and Wait

• No Preemption (of resources)

• Circular Wait

46

Synchronization
End of Section

47

COS450-F16-06-Synchronization - October 8, 2018

