
Synchronization
COS 450 - Fall 2018
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Producer - Consumer
Remember the Producer and  
Consumer scenario...


...it had a hidden problem
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public void insert(Object item) { 

while (count == BUFFER_SIZE) { 

; //do nothing buffer full 

} 

++count; 

buffer[in] = item; 

in = (in + 1) % BUFFER_SIZE; 

}

insert()
Is this code correct?

Yes, it is 
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public Object remove() { 

while (count == 0) { 

; //do nothing buffer empty 

} 

--count; 

item = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

return item; 

}

remove()
Is this code correct?

Yes, it is 

4 Similar process happens with 
remove that happened with insert.

Together However....
public void insert(Object item) { 

while (count == BUFFER_SIZE) { 
; //do nothing buffer full 
} 

++count; 
buffer[in] = item; 
in = (in + 1) % BUFFER_SIZE; 
}

public Object remove() { 
while (count == 0) { 

; //do nothing buffer empty 
} 

--count; 
item = buffer[out]; 
out = (out + 1) % BUFFER_SIZE; 
return item; 
}

...we have a problem

++count;

--count;
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Look at “++count”?
If we dig deeper we see...

... 
1: movl    _count(%ebx), %eax ; load 
2: cmpl    $10, %eax          ; compare 
3: je      1                  ; loop 
4: incl    %eax               ; increment 
5: movl    %eax, _count(%ebx) ; store 
...

 conveniently produced by “gcc -O2 -S count.c”
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...and “--count”
If we dig deeper we see...

... 
1: movl    _count(%ebx), %eax  ; load 
2: testl   %eax, %eax          ; compare 
3: je      1                   ; loop 
4: decl    %eax                ; decrement 
5: movl    %eax, _count(%ebx)  ; store 
...

 conveniently produced by “gcc -O2 -S count.c”
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When they run concurrently

we might see something like...

A1: movl    _count(%ebx), %eax ; load 
A2: cmpl    $10, %eax          ; compare 
A3: je      1                  ; loop 
A4: incl    %eax               ; increment 
B1: movl    _count(%ebx), %eax  ; load 
B2: testl   %eax, %eax          ; compare 
B3: je      1                   ; loop 
B4: decl    %eax                ; decrement 
B5: movl    %eax, _count(%ebx)  ; store  
A5: movl    %eax, _count(%ebx) ; store 

What is count?
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What is count?
9
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Critical Section

Some bits of code are rather 
important.


don’t interrupt them
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public void insert(Object item) { 

while (count == BUFFER_SIZE) { 

; //do nothing buffer full 

} 

++count; 

buffer[in] = item; 

in = (in + 1) % BUFFER_SIZE; 

}

insert()

What is Critical?Just this line.
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public Object remove() { 

while (count == 0) { 

; //do nothing buffer empty 

} 

--count; 

item = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

return item; 

}

remove()

Same thing here

12 Similar process happens with 
remove that happened with insert.
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Solved!
public void insert(Object item) { 

while (count == BUFFER_SIZE) { 

; //do nothing buffer full 

} 

enterCS(); 

++count; 

leaveCS(); 

buffer[in] = item; 

in = (in + 1) % BUFFER_SIZE; 

}
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A solution must ensure...

• Mutual Exclusion


• Progress


• Bounded Waiting
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Software Solution
Two process solution 

Assume LOAD and STORE are atomic

15 Peterson’s Solution in textbook
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Hardware Solutions
16

Get and Set
17

Swap
18
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Semaphores

an integer based synchronization 
mechanism
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Operations

Semaphores have two operations 
defined on them...


acquire 

release
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Semaphore Use
Semaphore S = new Semaphore() 

S.acquire(); 

   // critical section 

S.release(); 

...this is a simple mutex lock or 


binary semaphore
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Multiple Resources
Semaphore S = new Semaphore(10) 

S.acquire(); 

   // critical section 

S.release(); 

...here we can enter the critical section 
multiple times

22

Monitors

language based mutex


...in Java, “synchronized” keyword
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Synchronized insert() and remove() methods
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Implementation Details

• busy waiting (spinlock) 
while (canEnter()) { }


• wait and notify 
while(canEnter()) { wait(); } 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• When a thread invokes wait():  
 
1. The thread releases the object lock; 
2. The state of the thread is set to Blocked;  
3. The thread is placed in the wait set for the object. 

• When a thread invokes notify(): 
 
1. An arbitrary thread T from the wait set is selected; 
2. T is moved from the wait to the entry set; 
3. The state of T is set to Runnable.

26
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Classic Synchronization 
Problems

• Bounded Buffer


• Readers-Writers


• Dining Philosophers
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Bounded Buffer

Multiple processes share a common 
memory buffer.


...we have already 


looked at this one
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Readers-Writers

Many can 
read


Only one 
can write
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Dining Philosophers
31

deadlock

32

processes compete for resources

the problem is...
33
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Request

UseRelease

how a process uses a resource...
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deadlock can only exist if...
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Mutual Exclusion

36
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Hold and Wait

37

No Preemption

38

Circular Wait
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40

How to handle deadlock

Prevent - 4 conditions 

Avoid - safe states


Detect - after the fact


Ignore - it’s the administrator’s problem
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Prevention

don’t let the conditions exist that cause deadlock...


Mutual Exclusion 

Hold and Wait 

No Preemption 

Circular Wait
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Avoidance

keep from going into a state that may allow deadlock...


Safe States 
Unsafe States 

...using Banker’s, Safety,  
Resource-Request algorithms.
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Detection

does deadlock currently exist in the system?


examine resource allocation graph 

What do do if you find it?

44

Ignore
45
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Deadlock

• Mutual Exclusion


• Hold and Wait


• No Preemption (of resources)


• Circular Wait
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Synchronization
End of Section
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